【佳學基因檢測】基因檢測自動識別人類細胞陣列上的亞細胞表型
基因突變怎么治療秘決
課題調(diào)研基因檢測機構(gòu)自我培訓教材中的基因檢測技術(shù)優(yōu)勢專題中,通過《腫瘤突變基因檢測與個性化治療方案的制定》知道《Genome Res》在. 2004 Jun;14(6):1130-6.發(fā)表了一篇題目為《自動識別人類細胞陣列上的亞細胞表型》腫瘤靶向藥物治療基因檢測臨床研究文章。該研究由Christian Conrad , Holger Erfle, Patrick Warnat, Nathalie Daigle, Thomas Lörch, Jan Ellenberg, Rainer Pepperkok, Roland Eils等完成。這表明基因解碼技術(shù)與細胞治療中的分型技術(shù)走向結(jié)合,開啟了細胞學技術(shù)與基因檢測技術(shù)的跨學科結(jié)合,從而增加基因檢測的可信度和全面完整性。
腫瘤靶向藥物大數(shù)據(jù)臨床研究內(nèi)容關(guān)鍵詞:
細胞芯片,高通量,高內(nèi)涵,細胞陣列
腫瘤靶向治療基因檢測臨床應用結(jié)果
細胞形態(tài)的光學顯微鏡分析提供了細胞功能和蛋白質(zhì)定位的高內(nèi)涵數(shù)據(jù)。對培養(yǎng)細胞的細胞陣列和微孔轉(zhuǎn)染分析使細胞表型分析可用于高通量實驗。蛋白質(zhì)組中每種蛋白質(zhì)的定位和單個基因的 RNAi 敲低對細胞形態(tài)的影響都可以通過手動檢查顯微圖像來測定。然而,使用功能基因組學的形態(tài)讀數(shù)需要快速和自動識別復雜的細胞表型。在這里,我們提出了一個全自動平臺,用于結(jié)合人類活細胞陣列、篩選顯微鏡和基于機器學習的分類方法進行高通量細胞表型篩選。該平臺的效率通過對由 GFP 標記的蛋白質(zhì)標記的 11 種亞細胞模式進行分類來證明。我們的分類方法幾乎可以適用于任何基于細胞形態(tài)的顯微分析,從而開啟了廣泛的應用,包括人類細胞中的大規(guī)模 RNAi 篩選。
腫瘤發(fā)生與反復轉(zhuǎn)移國際數(shù)據(jù)庫描述:
Light microscopic analysis of cell morphology provides a high-content readout of cell function and protein localization. Cell arrays and microwell transfection assays on cultured cells have made cell phenotype analysis accessible to high-throughput experiments. Both the localization of each protein in the proteome and the effect of RNAi knock-down of individual genes on cell morphology can be assayed by manual inspection of microscopic images. However, the use of morphological readouts for functional genomics requires fast and automatic identification of complex cellular phenotypes. Here, we present a fully automated platform for high-throughput cell phenotype screening combining human live cell arrays, screening microscopy, and machine-learning-based classification methods. Efficiency of this platform is demonstrated by classification of eleven subcellular patterns marked by GFP-tagged proteins. Our classification method can be adapted to virtually any microscopic assay based on cell morphology, opening a wide range of applications including large-scale RNAi screening in human cells.
(責任編輯:佳學基因)